Bondi-hoyle-lyttleton Accretion onto a Protoplanetary Disk

نویسندگان

  • Nickolas Moeckel
  • Henry B. Throop
چکیده

Young stellar systems orbiting in the potential of their birth cluster can accrete from the dense molecular interstellar medium during the period between the star’s birth and the dispersal of the cluster’s gas. Over this time, which may span several Myr, the amount of material accreted can rival the amount in the initial protoplanetary disk; the potential importance of this ‘tail-end’ accretion for planet formation was recently highlighted by Throop & Bally (2008). While accretion onto a point mass is successfully modeled by the classical Bondi-Hoyle-Lyttelton solutions, the more complicated case of accretion onto a star-disk system defies analytic solution. In this paper we investigate via direct hydrodynamic simulations the accretion of dense interstellar material onto a star with an associated gaseous protoplanetary disk. We discuss the changes to the structure of the accretion flow caused by the disk, and vice versa. We find that immersion in a dense accretion flow can redistribute disk material such that outer disk migrates inwards, increasing the inner disk surface density and reducing the outer radius. The accretion flow also triggers the development of spiral density features, and changes to the disk inclination. The mean accretion rate onto the star remains roughly the same with and without the presence of a disk. We discuss the potential impact of this process on planet formation, including: compositional differences between the star and its disk; the possibility of triggered gravitational instability; inclination differences between the disk and the star; and the appearance of spiral structure in a gravitationally stable system. Subject headings: accretion, accretion disks — planetary systems: formation — planetary systems: protoplanetary disks

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Bondi–Hoyle–Lyttleton Accretion

If a point mass moves through a uniform gas cloud, at what rate does it accrete material? This is the question studied by Bondi, Hoyle and Lyttleton. This paper draws together the work performed in this area since the problem was first studied. Time has shown that, despite the simplifications made, Bondi, Hoyle and Lyttleton made quite accurate predictions for the accretion rate. Bondi–Hoyle–Ly...

متن کامل

Hoyle–Lyttleton Accretion onto Accretion Disks

We investigate Hoyle–Lyttleton accretion for the case where the central source is a luminous accretion disk. In classical Hoyle-Lyttleton accretion onto a “spherical” source, accretion takes place in an axially symmetric manner around a so-called accretion axis. In the spherical case the accretion rate Ṁ is given as ṀHL(1− Γ), where ṀHL is the accretion rate of the classical Hoyle–Lyttleton acc...

متن کامل

High Mach-number Bondi–Hoyle–Lyttleton flow around a small accretor

In this paper, we discuss a two-dimensional numerical study of isothermal high Mach number Bondi– Hoyle–Lyttleton flow around a small accretor. The flow is found to be unstable at high Mach numbers, with the instability appearing even for a larger accretor. The instability appears to be the unstable radial mode of the accretion column predicted by earlier analytic work.

متن کامل

A fresh look at the unstable simulations of Bondi - Hoyle - Lyttleton accretion

The instability of Bondi-Hoyle-Lyttleton accretion, observed in numerical simulations, is analyzed through known physical mechanisms and possible numerical artefacts. The mechanisms of the longitudinal and transverse instabilities, established within the accretion line model, are clarified. They cannot account for the instability of BHL accretion at moderate Mach number when the pressure forces...

متن کامل

An analytic study of Bondi–Hoyle–Lyttleton accretion II. Local stability analysis

The adiabatic shock produced by a compact object moving supersonically relative to a gas with uniform entropy and no vorticity is a source of entropy gradients and vorticity. We investigate these analytically. The non–axisymmetric Rayleigh– Taylor and axisymmetric Kelvin–Helmholtz linear instabilities are potential sources of destabilization of the subsonic accretion flow after the shock. A loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009